International Journal of Life science and Pharma Reviews (IJLPR)  
  Aim and Scope - To publish peer reviewed review articles in rapidly developing field of Pharma and life sciences  
Life Science
Volume 12 Issue 3, May 2022    Pages:40-50
Inhibitive Effect of Organic Inhibitors on the Corrosion of Mild Steel in  Acidic Medium

P.Singaravelu, N. Bhadusha and V.Dharmalingam
[View PDF]
The aim of the present work was to study the corrosion inhibition of mild steel using organic inhibitors. The corrosion inhibition activity of a newly synthesized [4-(4-aminobenzoyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-ABPFM) and [4-(4-aminophenyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-APFM) was investigated on the corrosion of mild steel in 1N HCl at room temperature for two hours using different methods.Such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Organic Inhibitor (4-4-ABPFM) were prepared throughout condensation of hydrochloric acid and reduction reaction using the reagent SnCl2, compound (4-4-APFM) involved a two reaction sequence of nucleophilic aromatic substitution and nitro group reduction, characterized by Fourier transform infrared spectroscopy (FT-IR). Electrochemical polarization test was also conducted to confirm the effectiveness of inhibition. Morphology of sample surfaces was respectively examined by scanning electron microscope (SEM). The result shows that the inhibition efficiency increases significantly up to 80% [4-(4-aminobenzoyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-ABPFM) and 73% [4-(4-aminophenyl) piperazin-1-yl) (furan-2-yl) methanone (4-4-APFM). The optimum efficiency is obtained at (4-4-ABPFM) concentration of 100 ppm for expositing time of 2 hours at room temperature. The polarization curve shows the inhibitor behaves as a mixed inhibitor with the dominant cathodic inhibition. The adsorption of optimum concentration of both the inhibitor on the surface of mild steel in 1N HCl solution follows Langmuir adsorption isotherm. The Surface condition is improved due to the adsorption and then formation of thin layer film protection in the surface of the mild steel. The synthesized compounds show an appreciable corrosion inhibition property for mild steel in 1N HCl medium at room temperature which varies in the order: (4-4-APFM) < (4-4-ABPFM) compound.  
Keywords: Organic inhibitors, Mild steel, Electrochemical studies, Adsorption, FT-IR, SEM
Full HTML:

De la Fuente D, Díaz I, Simancas J, Chico B, Morcillo M. Long-term atmospheric corrosion of mild steel. Corros Sci. 2011;53(2):604-17. doi: 10.1016/j.corsci.2010.10.007.

2.       Ulaeto SB, Ekpe UJ, Chidiebere MA, Oguzie EE. Corrosion inhibition of mild steel in hydrochloric acid by acid extracts of Eichhorniacrassipes. Int J Mater Chem. 2012;2:158-64.

3.       Sastri VS. Corrosion inhibitors principles and applications. New York: John Wiley and Sons; 1998.

4.       Quraishi MA, Singh A, Singh VK, Yadav DK, Singh AK. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murrayakoenigii leaves. Mater Chem Phys. 2010;122(1):114-22. doi: 10.1016/j.matchemphys.2010.02.066.

5.       Caliskan N, Akbas E. Corrosion inhibition of austenitic stainless steel by some pyrimidine compounds in hydrochloric acid. Mater Corros. 2012;63(3):231-7. doi: 10.1002/maco.201005788.

6.       Abd El-Maksoud SA, Fouda AS. Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater Chem Phys. 2005;93(1):84-90. doi: 10.1016/j.matchemphys.2005.02.020.

7.       Quraishi MA, Sharma HK. 4-amino-3-butyl-5-mercapto-l,2,4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid. Mater Chem Phys. 2002;78:18-21.

8.       Ramachandran G, Balamurugan R. Comparative study on mild steel in acidic medium using 5-Amino-2-chloro-3-picoline as inhibitor. Asian J Chem. 2018;30(4):917-9. doi: 10.14233/ajchem.2018.21153.

9.       Venkatesan P, Anand B, Matheswaran P. Influence of formazan derivatives on corrosion inhibition of mild steel in hydrochloric acid medium. Chem. 2009;6(s1);Suppl 1:S438-44. doi: 10.1155/2009/507383.

10.     Bentiss F, Lebrini M, Lagrenée M. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system. Corros Sci. 2005;47(12):2915-31. doi: 10.1016/j.corsci.2005.05.034.

11.     Ansari KR, Quraishi MA, Singh A. Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci. 2014;79:5-15. doi: 10.1016/j.corsci.2013.10.009.

12.     verma C, Quraishi MA, Olasunkanmi LO, Ebenso EE. l -Proline-promoted synthesis of 2-amino-4-arylquinoline-3-carbonitriles as sustainable corrosion inhibitors for mild steel in 1 M HCl: experimental and computational studies. RSC Adv. 2015;5(104):85417-30. doi: 10.1039/C5RA16982H.

13.     Obot IB, Macdonald DD, Gasem ZM. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corros Sci. 2015;99:1-30. doi: 10.1016/j.corsci.2015.01.037.

14.     El Azzouzi M, Aouniti A, Herrag L, Chetouani A, Elmsellem H, Hammouti B. Pharm Chem. 2015;7:12-24.

15.     Morad MS, El-Dean AMK. 2,2′-Dithiobis(3-cyano-4,6-dimethylpyridine): A new class of acid corrosion inhibitors for mild steel. Corros Sci. 2006;48(11):3398-412. doi: 10.1016/j.corsci.2005.12.006.

16.     Ameer MA, Fekry AM. Inhibition effect of newly synthesized heterocyclic organic molecules on corrosion of steel in alkaline medium containing chloride. Int J Hydrogr Energy. 2010;35(20):11387-96. doi: 10.1016/j.ijhydene.2010.07.071.

17.     Abd El-Maksoud SA, Fouda AS. Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater Chem Phys. 2005;93(1):84-90. doi: 10.1016/j.matchemphys.2005.02.020.

18.     Thomas JGN. Proceedings of the 5th European symposium on Corrosion Inhibitors. Ann. Universidad Ferrara; 1980. p. 453.

19.     Abdallah M. Rhodanineazosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution. Corros Sci. 2002;44(4):717-28. doi: 10.1016/S0010-938X(01)00100-7.

20.     Abdallah M. Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corros Sci. 2004;46(8):1981-96. doi: 10.1016/j.corsci.2003.09.031.

21.     Prabhu RA, Shanbhag AV, Venkatesha TV. Influence of tramadol [2-[(dimethylamino) methyl]-1-(3-methoxyphenyl) cyclohexanol hydrate] on corrosion inhibition of mild steel in acidic media. J ApplElectrochem. 2007;37(4):491-7. doi: 10.1007/s10800-006-9280-2.

22.     Okafor PC, Ikpi ME, Uwah IE, Ebenso EE, Ekpe UJ, Umoren SA. Inhibitory action of Phyllanthusamarus extracts on the corrosion of mild steel in acidic media. Corros Sci. 2008;50(8):2310-7. doi: 10.1016/j.corsci.2008.05.009.

23.     Noor EA. Potential of aqueous extract of Hibiscus sabdariffa leaves for inhibiting the corrosion of aluminum in alkaline solutions. J ApplElectrochem. 2009;39(9):1465-75. doi: 10.1007/s10800-009-9826-1.

24.     Ezhilarasi MR, Prabha B, Santhi T. Novel pyrazole based ionic liquid as a CorrosionInhibitor for mild steel in acidic media. ChemSci Trans. 2015;4(3):1-10.

25.     Ananth Kumar S, Sankar A. The chemical synthesis and corrosion inhibitive nature of 2-propyl pentanoic acid doped Poly Ortho Toludine for mild steel in acid medium. Discovery. 2015;36(161):1-10.

26.     Dharmalingam V, ArockiaSahayaraj P, John Amalraj A, Pragathiswaran C, Poly. (Acrylic acid) and sodium gluconate as effective corrosion inhibitors for mild steel in chloride environment. Int J ChemTech Res. 2017;10(5):630-41.

27.     Singh SK, Zhu C, Vuppuluri V, Son SF, Kaiser RI. Probing the reaction mechanisms involved in the decomposition of solid 1,3,5-trinitro-1,3,5-Triazinane (RDX) by energetic electron. J PhysChem A. 2019;123(44):9479-97. doi: 10.1021/acs.jpca.9b08695, PMID 31589046.

28.     Dharmalingam V, ArockiaSahayaraj P, John Amalraj A, AngelinPrema A, Poly. (Acrylic acid) and as effective potassium sodium tartrate inhibitors for mild steel in aqueous environment. J AdvElectrochem. 2016;2(1):37-41.

29.     Daoud D, Douadi T, IssaadiSaifi, Chafaa S. Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions. Corros Sci. 2014;79:50-8. doi: 10.1016/j.corsci.2013.10.025.

30.     Oguzie EE, Li Y, Wang FH. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. J Coll Interface Sci. 2007;310(1):90-8. doi: 10.1016/j.jcis.2007.01.038, PMID 17331526.

31.     Umasankareswari T, Jeyaraj T. Salicylideneaniline as inhibitor for the corrosion of mild steel in 1.0 N hydrochloric acid. J Chem Pharm Res. 2012;4(7):3414-9.

32.     Roy P, Karfa P, Adhikari U, Sukul D. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: effect of intramolecular Synergism. Corros Sci. 2014;88:246-53. doi: 10.1016/j.corsci.2014.07.039.

33.     Kuang W, Mathews JA, Macdonald DD. The effect of Anodamine on the corrosion behavior of 1018 mild steelin deionized water: I. Immersion and polarization tests. ElectrochimActa. 2014;127:79-85. doi: 10.1016/j.electacta.2014.02.011.

34.     Zheng X, Zhang Shengtao, Gong M, Li W. Experimental and theoretical study on the corrosion inhibition of mild steel by 1-Octyl-3-methylimidazolium L-Prolinate in sulfuric acid solution. IndEngChem Res. 2014;53(42):16349-58. doi: 10.1021/ie502578q.

35.     de Souza FS, Spinelli A. Caffeic acid as a green corrosion inhibitor for mild steel. Corros Sci. 2009;51(3):642-9. doi: 10.1016/j.corsci.2008.12.013.

36.     Badiea AM, Mohana KN. Corrosion mechanism of low-carbon steel in industrial water and adsorption thermodynamics in the presence of some plant extracts. J Mater Eng Perform. 2009;18(9):1264-71. doi: 10.1007/s11665-009-9378-x.

37.     Dharmalingam V, ArockiaSahayaraj P, John Amalraj A, Rajendran S. Electrochemical study and spectroscopic methods used for self assemblingnanofilm formed by polyacrylic acid on mild steel in aqueous environment. Asian J Res Chem. 2016;9(1):40-6.

38.     Singh P, Srivastava V, Quraishi MA. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J Mol Liq. 2016;216:164-73. doi: 10.1016/j.molliq.2015.12.086.

39.     XieFangxia, He X, Lv Y, Wu M, He X, Qu X. Selective laser sintered porous Ti–(4-10) Mo alloys for biomedical applications: structural characteristics, mechanical properties and corrosion behaviour. Corros Sci. 2015;95:117-24. doi: 10.1016/j.corsci.2015.03.005.

© 2010-2015 IJLPR rights reserved. Specialized onine journals by ubijournal. Website by Ubitech Solutions