International Journal of Life science and Pharma Reviews (IJLPR)  
  Aim and Scope - To publish peer reviewed review articles in rapidly developing field of Pharma and life sciences  
Life Science
Volume 12 Issue 3, May 2022    Pages:159-172
Antibacterial Efficiency and Phytochemical Assessment of Stereospermum Chelonoides (L.F.) DC Flower and Leaf Mixed Powder Extracts

M. Sangeetha , B. Anandaraj and S. Rajan
[View PDF]
Aim of the present study is to evaluate antibacterial efficiency of mixed powder preparation from the leaf and flower of Stereospermum chelonoides and its phytochemical evaluation. Bacterial species tested were isolated from UTI cases and showed multidrug resistance property. Stereospermum chelonoides is one of the medicinal trees worshiped as Holy plants in Thyagaraja Swamy Temple in Thiruvarur. It belongs to the family Bignoniaceae commonly called Sivappu Pathiri. All parts of the plant show a biological efficiency evidenced through various ethnobotanical databases. Traditional healers use this plant as a heal for vomiting, eructation, piles, acidity, diarrhoea, gonorrhoea, loss of taste, malaria and other fevers. Antimicrobial activity was assessed by making use of two bacterial isolates by disc diffusion and drug dilution method. Zone of inhibition, MIC, MBC, Percentage inhibition and IC50 were calculated using standard textual methods. Qualitative and quantitative phytochemicals were assessed by making use of textual procedures. Active principle of the SCMPEE was evaluated by the column chromatography, TLC, LC-MS and NMR methods. Aqueous (SCMPAE) and ethanolic (SCMPEE) extracts produced good antibacterial activity against all the test organisms with efficient MIC and MBC. Percentage of inhibition ranges from 53.1% to 84.2%. Stereospermum chelonoides extracts inhibited the growth of gram negative urinary bacterial isolates with 274.4 μg/ml IC50 for Klebsiella pneumoniae by SCMPEE. Qualitative phytochemical analysis showed the presence of tannins, saponins, terpenoids, triterpenoids, flavonoids, anthraquinones and polyphenols in both the extracts. Active principle assessment indicated the presence of quercetin 3 -O-Glucoside, which could exert antibacterial efficiency via protein precipitation mechanisms.
Keywords: Bacterial pathogens, MIC, MBC, Antibacterial activity, IC50, Percentage inhibition, stereospermum chelonoides, flower and leaf mix, phytochemistry.
Full HTML:

1.          Savini V, Catavitello C, Talia M, Manna A, Pompetti F, Favaro M et al. Multidrug-resistant Escherichia fergusonii: a case of acute cystitis. J Clin Microbiol. 2008;46(4):1551-2. doi: 10.1128/JCM.01210-07, PMID 18256229.

2.          Yoganarasimhan SN.medicinal plants of India, vol. 2. Tamil Nadu. Bangalore: Rotman Research Institute. 2000.

3.          Wahab Sab BA, Jacob J, Manjunath GG, Singh VK, Mundkinajeedu D, Shankarappa S. Cycloolivil, A lignan from the roots of Stereospermum suaveolens. Pharmacognosy Res. 2015;7(1):45-8. doi: 10.4103/0974-8490.147198, PMID 25598634.

4.          Kritikar KR, Basu BD. Indian Medicinal plants, Dehradun, International book distributors. 1999;2:1848.

5.          Masoumeh R, Deokule SS. Deterioration of chemical constituents in roots of drug Stereospermum chelonoides DC. Under storage. Asian J Plant Sci Res. 2013;3(1):111-4.

6.          Prema S, Saraswathi A, Chitra K, Gopal V. A Review on Stereospermum colais Mabb: Bignoniaceae. Int J Pharm Sci Rev Res. 2013;21(1):314-7.

7.          Meena AK, Yadav AK, Panda P, Preet K, Rao MM. Review on Stereospermum suaveolens DC: A potential Herb. Drug Invent Today. 2010;2(5):238-9.

8.          Moniruzzaman M, Kuddus MR, Haque MR, Chowdhury AS, Rashid MA. Stereospermum suaveolens (Roxb.) DC. Shows Potential in vivo and in vitro Bioactivities. Dhaka Univ J Pharm Sci. 2018;17(2):257-63. doi: 10.3329/dujps.v17i2.39184.

9.          Farnsworth NR, Chapter 9. Screening of plants for new medicines. In:. In: Wilson EO, editor, Biodiversity. Washington, DC: National Academy Press; 1988.

10.        Bauer AW, Kirby W, Sherris TS, Turek M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966;36:493-6.

11.        Koneman EW, William MJ, Stephen DA, Schreeken B, Washington CW. Laboratory and clinical diagnosis of infectious diseases. In: Introduction to diagnostic microbiology. Philadelphia: J B Lippincott Publishers Company; 1994. p. 1-19.

12.        Özçelik S, K?lavuzu GML. Elaz?? F?rat Üniversitesi Fen-edebiyat Fakültesi Yay?nlar?, yay?n. 1992;1:135.

13.        Collins CH, Lyne PM, Grange JM. Microbiological methods. 6th ed. Vol. 1989. Boston: Butterworths & Co, Ltd; 1989. p. 410.

14.        Bradshaw LJ USA. Laboratory of microbiology. 4th ed, Saunders College Publishing, Harcourt Brace Javanovich College Publishers; 1992. p. 435.

15.        Kowser MM, Fatena N. Determination of MIC and MBC of selected azithromycin capsule commercially available in Bangladesh. The Orion Med J. 2009;32(1):619-20.

16.        Sofowara A. Medicinal plants and Traditional medicine in Africa. Ibadan, Nigeria: Spectrum Books Ltd; 1993. p. 289.

17.        Trease GE, Evans WC. Text book of Pharmacognosy. 12th ed, Belliere Tinad. London; 1983. p. 257.

18.        Harborne JB. Phytochemical Methods; A guide to modern techniques of plant Analysis. 2nd ed. London, New York; 1984.

19.        Javed I, Mohammad A. Isolation of a flavonoid from the roots of Citirus sinensis. Malasiyan J Pharm Sci. 2009;7(1):1-8.

20.        . JHA, . RO, . CCW. Phytochemical Screening of Flavonoids in three Hybrids of Nepenthes (Nepenthaceae) and their Putative Parental Species from Sarawak and Sabah. J Biol Sci. 2002;2(9):623-5. doi: 10.3923/jbs.2002.623.625.

21.        Luvincia FM, Abhishek BR, Vivek P. Phytochemical, FTIR and NMR analysis of crude extract of Acacia planifrons seeds. J Pharm Sci Res. 2019;11(5):1960-2.

22.        Blunder M, Orthaber A, Bauer R, Bucar F, Kunert O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem. 2017;218:600-9. doi: 10.1016/j.foodchem.2016.09.077, PMID 27719955.

23.        Bataglion GA, da Silva FMA, Eberlin MN, Koolen HHF. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chem. 2015;180:280-7. doi: 10.1016/j.foodchem.2015.02.059, PMID 25766829.

24.        Suman E, Jose J, Varghese S, Kotian MS. Study of biofilm production in Escherichia coli causing urinary tract infection. Indian J Med Microbiol. 2007;25(3):305-6. doi: 10.4103/0255-0857.34788, PMID 17901664.

25.        Pramodhini S, Niveditha S, Umadevi S, Shailesh K, Stephen S. Antibiotic resistance pattern of biofilm-forming uropathogens isolated from catheterised patients in Pondicherry, India, Australias. Med J. 2012;5(7):344-8.

26.        Mina Y, Mohammad YM, Naser A, Nasser S, Reza G. Antibiotic resistance patterns of biofilm-forming Pseudomonas aeruginosa isolates from mechanically ventilated patients. Int J Sci Study. 2017;5(5):1-5.

27.        Ohadian Moghadam S, Pourmand MR, Aminharati F. Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J Infect Dev Ctries. 2014;8(12):1511-7. doi: 10.3855/jidc.5514.

28.        Sanchez GV, Master RN, Karlowsky JA, Bordon JM. In vitro antimicrobial resistance of urinary Escherichia coli isolates among U.S. Outpatients from 2000 to 2010. Antimicrob Agents Chemother. 2012;56(4):2181-3. doi: 10.1128/AAC.06060-11, PMID 22252813.

29.        Guvenalp Z, Nurcan K, Kazaz C, Yusuf K, Omur DL. Chemical Constituents of Galium tortumense. Turkist J Chem. 2006;30:515-23.

30.        Patle TK, Shrivas K, Kurrey R, Upadhyay S, Jangde R, Chauhan R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV-vis and FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;242:118717. doi: 10.1016/j.saa.2020.118717, PMID 32745936.

31.        Sumanth MV, Yellanthoor MB, Ravikumar K, Ravichandran P. Comparative physicochemical, phytochemical and HPTLC studies on root species used as Patala in Ayurvedic system of medicine. J Pharm Res. 2013;7(9):810-6. doi: 10.1016/j.jopr.2013.09.007.

32.        Subramanian SS, Nagarajan S, Sulochana MN. Flavonoids of the leaves of Stererospermum suaveolens. Curr Sci. 1972;41:102-3.

33.        Ramachandran AG, Kotiyal JP. Stereolensin: A new flavone glucoside from Stereospermum suaveolens. Indian J Chem. 1979;18B:188-9.

34.        Leslie Gunatilaka AA, Dhammika Nanayakkara N, Wazeer MIM. 13C NMR Spectra of some D:A-friedo-oleananes?. Phytochemistry. 1983;22(4):991-2. doi: 10.1016/0031-9422(83)85038-9.

35.        Teng RW, Wang DZ, Wu YS, Lu Y, Zheng QT, Yang CR. NMR assignments and single-crystal X-ray diffraction analysis of deoxyloganic acid. Magn Reson Chem. 2005;43(1):92-6. doi: 10.1002/mrc.1502, PMID 15505818.

36.        Baek SD, Chun C, Hong KS. Hemolytic uremic syndrome caused by Escherichia fergusonii infection. Kidney Res Clin Pract. 2019;38(2):253-5. doi: 10.23876/j.krcp.19.012.

37.        Marami D, Balakrishnan S, Seyoum B. Prevalence, antimicrobial susceptibility pattern of bacterial isolates, and associated factors of urinary tract infections among HIV-positive patients at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. Can J Infect Dis Med Microbiol. 2019;2019:6780354. doi: 10.1155/2019/6780354, PMID 30881531.

38.        Tessema NN, Ali MM, Zenebe MH. Bacterial associated urinary tract infection, risk factors, and drug susceptibility profile among adult people living with HIV at Haswassa University Comprehensive Specialized Hospital, Hawassa, Southern Esthiopia. Sci Rep. 202010(1):10790. doi: 10.1038/s41598-020-67840-7, PMID 32612139.

39.        Simmons K, Islam MR, Rempel H, Block G, Topp E, Diarra MS. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens. Journal of Food Protection. 2016;79(6):929-38. doi: 10.4315/0362-028X.JFP-15-575.

40.        Singh AK, Das S, Kumar S, Gajamer VR, Najar IN, Lepcha YD et al. Distribution of antibiotic-Resistant Enterobacteriaceae Pathogens in Potable Spring water of Eastern Indian Himalayas: emphasis on Virulence Gene and antibiotic Resistance Genes in Escherichia coli. Front Microbiol. 2020;11:581072. doi: 10.3389/fmicb.2020.581072, PMID 33224119.

41.        Bader MS, Loeb M, Leto D, Brooks AA. Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgrad Med. 2020;132(3):234-50. doi: 10.1080/00325481.2019.1680052, PMID 31608743.

42.        Bours PHA, Polak R, Hoepelman AIM, Delgado E, Jarquin A, Matute AJ. Increasing resistance in community-acquired urinary tract infections in Latin America, five years after the implementation of national therapeutic guidelines. Int J Infect Dis. 2010;14(9):e770-4. doi: 10.1016/j.ijid.2010.02.2264.

43.        Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019;667:64-76. doi: 10.1016/j.scitotenv.2019.02.183, PMID 30826682.

44.        Praveenkumarreddy Y, Akiba M, Guruge KS, Balakrishna K, Vandana KE, Kumar V. Occurrence of antimicrobial-resistant Escherichia coli in sewage treatment plants of south India. J Water Sanit Hyg Dev. 2020;10(1):48-55. doi: 10.2166/washdev.2020.051.

45.        Costa EC, Arpini CM. Antibiotic sensitivity profile of enteric bacteria isolated from beach waters and sewage from the municipality of Vila Velha-ES. Braz J Bacteriol Parasitol. 2016;7:3-7.

46.        Karkman A, Do TT, Walsh F, Virta MPJ. Antibiotic-resistance genes in waste Water. Trends Microbiol. 2018;26(3):220-8. doi: 10.1016/j.tim.2017.09.005. PMID 29033338.

47.        Farmer JJ, Fanning GR, Davis BR, O’Hara CM, Riddle C, Hickman-Brenner FW et al. Escherichia fergusonii and Enterobacter taylorae, Two New Species of Enterobacteriaceae Isolated from Clinical Specimens. J Clin Microbiol. 1985;21(1):77-81. doi: 10.1128/jcm.21.1.77-81.1985, PMID 3968204.

48.        Adzitey F. Incidence and antimicrobial susceptibility of Escherichia coli isolated from beef (meat muscle, liver and kidney) samples in Wa Abattoir, Ghana. Cogent Food Agric. 2020;6(1):1718269. doi: 10.1080/23311932.2020.1718269.

49.        Meng L, Liu H, Lan T, Dong L, Hu H, Zhao S et al. Antibiotic resistance patterns of Pseudomonas spp. Isolated from raw milk revealed by whole genome sequencing. Front Microbiol. 2020;11:1005. doi: 10.3389/fmicb.2020.01005. PMID 32655503.

50.        Adegoke AA, Madu CE, Aiyegoro OA, Stenström TA, Okoh AI. Antibiogram and beta-lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Antimicrob Resist Infect Control. 2020;9(1):46. doi: 10.1186/s13756-020-0702-4, PMID 32164766.

51.        Morris S, Cerceo E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics (Basel). 2020;9(4):1-20. doi: 10.3390/antibiotics9040196, PMID 32326058.

52.        Ss M. Occurrence of Multiple Antibiotic Resistant E. coli on Surface Water of River Ganga at Allahabad, Uttar Pradesh, India. OFOAJ;8(1). doi: 10.19080/OFOAJ.2018.08.555730.

53.        Sandhu R, Aggarwal A, Sayal P, Kumar S. Intestinal carriage of drug-resistant Gram-negative bacteria belonging to family Enterobacteriaceae in children aged 3-14 years: an emerging threat. Int J Health Allied Sci. 2019;8:108-15. doi: 10.4103/ijhas.IJHAS.

54.        Igwaran A, Iweriebor BC, Okoh AI. Molecular characterization and antimicrobial resistance pattern of Escherichia coli recovered from wastewater treatment plants in Eastern Cape South Africa. Int J Environ Res Public Health. 2018;15(6):1237. doi: 10.3390/ijerph15061237, PMID 29895735.

55.        Kothai S. In vitro synergistic effect of chewing sticks (toothbrush), cinnamon and honey against Streptococcus pyogenes. Int J Sci Innov Discov. 2013;3(1):43-50.

56.        Kothai S, Thiyagarajan T. Antimicrobial activity of chewing sticks of Jimma-Ethiopia against Streptococcus pyogens. J Phytol. 2011;3(8):34-7.

57.        Van Vuuren SF, Viljoen AM. The in vitro antimicrobial activity of toothbrush sticks used in Ethiopia. S Afr J Bot. 2006;72(4):646-8. doi: 10.1016/j.sajb.2006.03.009.

58.        Adamu HM, Abayeh OJ, Agho MO, Abdullahi AL, Uba A, Dukku HU et al. An ethnobotanical survey of Bauchi state herbal plants and their antimicrobial activity. J Ethnopharmacol. 2005;99(1):1-4. doi: 10.1016/j.jep.2004.12.025, PMID 15848012.

59.        Rashedul IM, Rubina A, Obaidur RM, Ahsanul AM, Muhammad A, Dedarul AK et al. In vitro antimicrobial activities of four medicinally important plants in Bangladesh. Eur J Sci Res. 2010;39(2):199.

60.        Lenta BN, Weniger B, Antheaume C, Noungoue DT, Ngouela S, Assob JC et al. Anthraquinones from the stembark of Stereospermum zenkeri with antimicrobial activity. Phytochemistry. 2007;68(11):1595-9. doi: 10.1016/j.phytochem.2007.03.037, PMID 17499823.

61.        Vijaya BR, Jerad SA, Kumudha VB, Lata S, Geetha LS, Thirumal M. In vitro antibacterial and antifungal studies of Stereospermum colais leaf extracts. Int J Pharm Technol. 2010;2(3):603-11.

62.        Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ’proof-of-concept’. J Ethnopharmacol. 2006;106(3):290-302. doi: 10.1016/j.jep.2006.04.003, PMID 16698208.

63.        Haque MR, Rahman KM, Iskander MN, Hasan CM, Rashid MA. Stereochenols A and B, Two quinones from Stereospermum chelonoides. Phytochemistry. 2006;67(24):2663-5. doi: 10.1016/j.phytochem.2006.08.014, PMID 17027879.

64.        Shanta MA, Mondal M, Majumder S, Islam MI, Hoque N, Tithi NS et al. Pharmacological investigations of chloroform extract of Stereospermum chelonoides leaves. Int J Pharm Sci Res. 2018;9(10):4256-66. doi: 10.13040/IJPSR.0975-8232.9(10).4256-66.

65.        Jaime A, Teixera DS, Abdulla IH. Citrullus colocynthis (colocynth): biotechnological prospectives. Emirates J Food Agric. 2017;29(2):83-90.

66.        Patni CS, Kohe SJ, Awasthi RP. Efficacy of botanicals against Alternaria blight (Alternaria brassicae) of mustard. Indian Phytopathol. 2005;58(4):426-30.

67.        Karou D, Salvodogo A, Canini A. Antibacterial activity of alkaloids from Sida acuta. Afr J Biotechnol. 2005;4:1452-7.

68.        Masika PJ, Afolayan AJ. Antimicrobial activity of some plants used for the treatment of livestock disease in the Eastern Cape, South Africa. J Ethnopharmacol. 2002;83(1-2):129-34. doi: 10.1016/s0378-8741(02)00242-8, PMID 12413718.

69.        Antherden LM. Textbook of pharmaceutical chemistry. 8th ed. Oxford: Oxford University press; 1969. p. 813-4.

70.        Hérouart D, Sangwan R, Fliniaux M, Sangwan-Norreel B. Variations in the Leaf Alkaloid Content of Androgenic Diploid Plants of Datura innoxia. Planta Med. 1988;54(1):14-7. doi: 10.1055/s-2006-962320.

71.        Duguid JP. A guide to the laboratory diagnosis and control of infection. In collee et al. (eds) Mackie and McCartney Medical Microbiology. 13th ed. Vol. 1. New York: Churchill Livingstone; 1989. p. 163.

72.        Li QM, Claeys M. Characterization and differentiation of diglycosyl flavonoids by positive ion fast atom bombardment and tandem mass spectrometry. Biol Mass Spectrom. 1994;23(7):406-16. doi: 10.1002/bms.1200230705, PMID 8068736.

73.        Vukics V, Guttman A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev. 2010;29(1):1-16. doi: 10.1002/mas.20212, PMID 19116944.

74.        Ferreres F, Gil-Izquierdo A, Andrade PB, Valentão P, Tomás-Barberán FA. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1161(1-2):214-23. doi: 10.1016/j.chroma.2007.05.103, PMID 17602695.

75.        Cuyckens F, Claeys M. Determination of the glycosylation site in flavonoid mono-O-glycosides by collision-induced dissociation of electrospray-generated deprotonated and sodiated molecules. J Mass Spectrom. 2005;40(3):364-72. doi: 10.1002/jms.794, PMID 15674860.

76.        Fossen T, Andersen OM. Spectroscopic techniques applied to flavonoids. In: Flavonoids – chemistry, biochemistry and applications, Andersen ØM, Markham KR,(37-142). Taylor & Francis. USA; 2005. p. 978-0-8493-2021-7.

77.        Olejniczak S, Potrzebowski MJ. So lid state NMR studies and density functional theory (DFT) calculations of conformers of quercetin. Org Biomol Chem. 2004;2(16):2315-22. doi: 10.1039/b406861k, PMID 15305212.

78.        Mendoza EE, Burd R. Quercetin as a systemic chemopreventative agent: structural and functional mechanisms. Mini Rev Med Chem. 2011;11(14):1216-21-2221. doi: 10.2174/13895575111091216, PMID 22070678.

79.        Alizadeh SR, Ebrahimzadeh MA. O-glycoside quercetin derivatives: biological activities, mechanisms of action, and structure-activity relationship for drug design, a review. Phytother Res. 2022;36(2):778-807. doi: 10.1002/ptr.7352, PMID 34964515.

80.        Haneef DM, Budhiraja MV, Budhiraja MP. Antioxidant Potential, Acute Toxicity Profile and Bioavailability Studies of Water Soluble Analogue of Curcumin. Int J Pharma Bio Sci. 2022;13(2):40-50. doi: 10.22376/Ijpbs.2022.13.2.p40-50.

81. Sarkar D, Ganguly A. Molecular docking studies with garlic phytochemical constituents to inhibit the human EGFR protein for lung cancer therapy. Int J Pharma Bio Sci. 2022;13(2):1-14. doi: 10.22376/Ijpbs.2022.13.2.b1-14

© 2010-2015 IJLPR rights reserved. Specialized onine journals by ubijournal. Website by Ubitech Solutions