International Journal of Life science and Pharma Reviews (IJLPR)  
   
  Aim and Scope - To publish peer reviewed review articles in rapidly developing field of Pharma and life sciences  
 
Article
Life Science
Volume 12 Issue 3, May 2022    Pages:115-121
Inhibition of Food- Borne Pathogens by Pediococcus Pentosaceus DS1 and in Silico Analysis of the Pediocin Gene

Surjya Loying, Deep Prakash Parasar, Rahul Nayak, Manash Pratim kashyap and Devabrata Saikia
[View PDF]
DOI: http://dx.doi.org/10.22376/ijpbs/lpr.2022.12.3.L115-121
Abstract:
Global food safety is a huge concern, costing food industries billions of dollars every year. A healthy eating habit has become a myth due to an increase in food borne diseases. It is therefore necessary to avoid economic losses due to microbial spoilage and to preserve foods naturally in order to solve many of the current issues with food. Antimicrobial peptides isolated from bacteria have garnered considerable attention because of their potential benefits in extending the shelf-life of food products. Listeria monocytogenes and Staphylococcus aureus are two opportunistic pathogens which cause various food borne diseases.  The aim of the study was to evaluate the production of antimicrobial compounds by the strain Pediococcus pentosaceus DS1 isolated from ekung, a fermented bamboo shoot product of North- East India. The main objectives of the study were to perform agar well diffusion assay for antimicrobial activity followed by characterization of the antimicrobial compound present in the cell free supernatant of the bacteria. It was observed that the antimicrobial peptide containing cell surface supernatant extracted from P. pentosaceus DS1 was able to inhibit Listeria monocytogenes (MTCC 839) and Staphylococcus aureus (MTCC 3160). PCR amplification led to the detection of a gene sequence in the genome of the strain P. pentosaceus DS1 which showed maximum similarity to pediocin, a 406 bp sequence. Pediocin belongs to a group of antimicrobial proteins known as bacteriocins which possess antimicrobial activities against food borne pathogens and spoilage bacteria. In- silico analysis indicated the presence of class IIa bacteriocin superfamily motif in the sequence. Class IIa bacteriocin producing bacteria isolated from fermented foods have a proven history of being used safely as antimicrobial agents in the food industry. Thus, this study reveals that P. pentosaceus DS1 has the potential to produce bacteriocinogenic agents that can be used safely to inhibit food pathogens. 
Keywords: Fermented Food; Antimicrobial Agent; Food Pathogens; Bacteriocin; PCR; Gene Sequencing
Full HTML:
  1. Cohen ML. Changing patterns of infectious disease. Nature. 2000;406(6797):762-7. doi: 10.1038/35021206, PMID 10963605.
  2. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol. 2010;139; Suppl 1:S3-15. doi: 10.1016/j.ijfoodmicro.2010.01.021, PMID 20153070.
  3. FAO. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. In: The joint FAO/WHO expert consultation report on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. October 1-4. Cordoba, Argentina; 2001.
  4. O’sullivan L, Ross RP, Hill C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie. 2002;84(5-6):593-604. doi: 10.1016/s0300-9084(02)01457-8, PMID 12423803.
  5. Marte Eva K, John David FH, Rohit J. Oral probiotics containing Streptococcus salivarius M18 for the prevention of dental plaque: A systematic review. Int J Pharma Bio Sci. 2021;12(3):43-9. doi: 10.22376/ijpbs.2021.12.3.B43-49.
  6. Marte Eva K, John David FH, Rohit J. Efficacy of oral probiotic Streptococcus salivarius K12 in the Prevention of Halitosis (Bad Breath): A Systematic Review. Int J Pharma Bio Sci. 2021;12(4):27-34. doi: 10.22376/ijpbs.2021.12.4.b27-34.
  7. Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE. Review: Bacteriocins of lactic acid bacteria. Food Sci Technol Int. 2001;7(4):281-305. doi: 10.1106/R8DE-P6HU-CLXP-5RYT.
  8. Fimland G, Johnsen L, Axelsson L, Brurberg MB, Nes IF, Eijsink VG, Nissen-Meyer J. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J Bacteriol. 2000;182(9):2643-8. doi: 10.1128/JB.182.9.2643-2648.2000, PMID 10762272.
  9. Sood SK, Vijay Simha BV, Kumariya R, Garsa AK, Mehla J, Meena S, Lather P. Highly specific culture-independent detection of YGNGV motif-containing pediocin-producing strains. Probiotics Antimicrob Proteins. 2013;5(1):37-42. doi: 10.1007/s12602-012-9114-y, PMID 26782603.
  10. Jonganurakkun B, Wang Q, Xu SH, Tada Y, Minamida K, Yasokawa D, Sugi M, Hara H, Asano K. Pediococcus pentosaceus NB-17 for probiotic use. J Biosci Bioeng. 2008;106(1):69-73. doi: 10.1263/jbb.106.69, PMID 18691534.
  11. Vidhyasagar V, Jeevaratnam K. Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. J Funct Foods. 2013;5(1):235-43. doi: 10.1016/j.jff.2012.10.012.
  12. Jang S, Lee D, Jang IS, Choi HS, Suh HJ. The culture of Pediococcus pentosaceus T1 inhibits Listeria proliferation in salmon fillets and controls maturation of kimchi. Food Technol Biotechnol. 2015;53(1):29-37. doi: 10.17113/ftb.53.01.15.3754, PMID 27904329.
  13. Tamang B, Tamang JP. Traditional knowledge of biopreservation of perishable vegetable and bamboo shoots in Northeast India as food resources.
  14. Cocolin L, Foschino R, Comi G, Grazia Fortina MG. Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol. 2007;24(7-8):752-8. doi: 10.1016/j.fm.2007.03.001, PMID 17613373.
  15. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the Expasy server. The proteomics protocols handbook; 2005. p. 571-607.
  16. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16(4):404-5. doi: 10.1093/bioinformatics/16.4.404, PMID 10869041.
  17. Garg VK, Avashthi H, Tiwari A, Jain PA, Ramkete PW, Kayastha AM, Singh VK. MFPPI–multi FASTA ProtParam interface. Bioinformation. 2016;12(2):74-7. doi: 10.6026/97320630012074, PMID 28104964.
  18. Saif FA, Sakr EA. Characterization and bioactivities of exopolysaccharide produced from probiotic Lactobacillus plantarum 47FE and Lactobacillus pentosus 68FE. Bioact Carbohydr Diet Fibre. 2020;24. PMID 100231.
  19. Tang H, Qian B, Xia B, Zhuan Y, Yao Y, Gan R, Zhang J. Screening of lactic acid bacteria isolated from fermented Cornus officinalis fruits for probiotic potential. J Food Saf. 2018;38(6):e12565. doi: 10.1111/jfs.12565.
  20. Bajpai VK, Han JH, Rather IA, Park C, Lim J, Paek WK, Lee JS, Yoon JI, Park YH. Characterization and antibacterial potential of lactic acid bacterium Pediococcus pentosaceus 4I1 isolated from freshwater fish Zacco koreanus. Front Microbiol. 2016;7:2037. doi: 10.3389/fmicb.2016.02037, PMID 28066360.
  21. Tzanetakis N, Litopoulou-Tzanetaki E. Biochemical activities of Pediococcus pentosaceus isolates of dairy origin. J Dairy Sci. 1989;72(4):859-63. doi: 10.3168/jds.S0022-0302(89)79178-5.
  22. Garvie EI. Genus Pediococcus Claussen 1903. Bergey’s manual of systemic bacteriology Senath Sneath PHA, Mair NS, Sharpe ME, Holt JG, editors. Vols. 1075-1079.
  23. Bajpai VK, Rather IA, Majumder R, Alshammari FH, Nam GJ, Park YH. Characterization and antibacterial mode of action of lactic acid bacterium Leuconostoc mesenteroides HJ69 from Kimchi. J Food Biochem. 2017;41(1):e12290. doi: 10.1111/jfbc.12290.
  24. Yin LJ, Wu CW, Jiang ST. Bacteriocins from Pediococcus pentosaceus L and S from pork meat. J Agric Food Chem. 2003;51(4):1071-6. doi: 10.1021/jf025838f, PMID 12568574.
  25. Coenye T, Vandamme P. Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett. 2003;228(1):45-9. doi: 10.1016/S0378-1097(03)00717-1, PMID 14612235.
  26. Ladha G, Jeevaratnam K. Characterization of purified antimicrobial peptide produced by Pediococcus pentosaceus LJR1, and its application in preservation of white leg shrimp. World J Microbiol Biotechnol. 2020;36(5):72. doi: 10.1007/s11274-020-02847-w, PMID 32363424.
  27. Chen Y, Shapira R, Eisenstein M, Montville TJ. Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol. 1997;63(2):524-31. doi: 10.1128/aem.63.2.524-531.1997, PMID 9023932.
  28. Ceroni A, Passerini A, Vullo A, Frasconi P. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res. 2006 July 1;34(Web Server issue):W177-81. doi: 10.1093/nar/gkl266, PMID 16844986.
  29. Ríos Colombo NS, Chalón MC, Navarro SA, Bellomio A. Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet. 2018;64(2):345-51. doi: 10.1007/s00294-017-0757-9, PMID 28983718.
  30. Kumar S. In silico identification of novel tuberculosis drug targets in Mycobacterium tuberculosisP450 enzymes by interaction study with azole drugs. Malays J Med Health Sci. 2020;16(1):24-30

 

 

 

 
© 2010-2015 IJLPR rights reserved. Specialized onine journals by ubijournal. Website by Ubitech Solutions