BLUE GREEN ALGAE FROM RICE FIELDS OF KARIMGANJ DISTRICT, ASSAM, NORTH EAST INDIA

MOIRANGTHEM THAJAMANBI¹, JAYASHREE ROUT¹* AND NOORUDDIN THAJUDDIN²

¹Department of Ecology and Environmental Science, Assam University, Silchar, Assam, India-788011
²Department of Microbiology, Bharathidasan University, Tiruchirapalli, Tamilnadu, India- 620024

ABSTRACT

Cyanobacteria (blue green algae) are present abundantly in rice fields and are important in maintaining the rice field fertility through nitrogen fixation. An investigation on cyanobacteria (blue green algae) from the rice fields of Son beel and its nearby adjoining areas of Karimganj district, Southern Assam, India was carried out. A total of thirty four strains of filamentous cyanobacteria were isolated and classified according to their morphological characteristics. The cyanobacterial isolates were classified into ten genera, including seven heterocystous and three non heterocystous genera. The genera Nostoc, Calothrix, Anabaena and Cylindrospermum were the dominant heterocystous group while Lyngbya, Oscillatoria and Phormidium form the non-heterocystous group in the district.

KEYWORDS: Blue green, cyanobacteria, Karimganj district, morphology, rice fields.

INTRODUCTION

Blue green algae are one of the main components of the microbiota in rice fields and play an important role in the maintenance and build-up of soil fertility, consequentially increasing rice production (Song et al. 2005). They have an important role in the nitrogen fixation, particularly in rice fields (Hazarika et al. 2012). The rice fields are agronomically managed ecosystem, well known for the rich diversity of cyanobacteria (Dey et al. 2012). Rice fields constitute one of the favourable ecologies for the growth and proliferation of cyanobacteria meeting their requirements for light, water and higher temperature (Whitton and Potts 2000). Rice fields are a suitable environment for the growth of diazotrophic, oxygenic cyanobacteria by providing suitable temperature, nutrient and water facilities. Cyanobacteria in return, provide a large amount of nutrients, such as nitrogen and phosphorus needed for rice cultivation (Singh et al. 2014). Most rice fields have a natural population of cyanobacteria which provides a potential source of nitrogen fixation. Species of Nostoc, Anabaena, Tolypothrix, Aulosira, Cylindrospernum, Scytonema, Westiellopsis and several other genera are widespread in Indian rice field soils and are known to contribute significantly to their fertility (Venkataraman 1981; Rao et al. 2008; Choudhary et al. 2011). These nitrogen fixing organisms have attributed to the natural fertility of tropical rice fields. They are able to photosynthesize, fix atmospheric nitrogen, highly adaptive contributing to the productivity in various agricultural and ecological environments. Studies on cyanobacterial diversity has received due attention in the recent times (Thajuddin and Subramanian 2005). Rice fields are ideal habitats for blue green algae. Research on cyanobacterial flora from rice fields were also carried out in different parts of India (Nayak and Prasanna 2007; Dasgupta and Ahmed 2013; Singh et al. 2014). However, information on systematic study on cyanobacterial algae from this part of Southern Assam is scant. Only a few reports on the rich algal diversity from rice fields of Southern Assam are available during the last couple of decades (Nandi and Rout 2000; Deb et al. 2013). Rout and Dey (1999) investigated the algal flora from rice fields of Irongmara of Cachar district (Southern Assam). Borah et al., (2014) studied the morphology of two N. commune strains isolated from two different rice-growing agro-ecosystems (flat and terrace paddy fields) of Dima Hasao district, Assam, North-East India and made a comparative analysis of the pigments and biochemical properties. The agroclimatic condition...
of the rice fields of Son beel and its nearby adjoining areas favors the growth of several rice cultivars along with luxuriant cyanobacterial population. Therefore, in this paper we intend to address some cyanobacterial strains and their morphological attributes from the selected rice fields of Karimganj district, in Southern Assam, India.

MATERIALS AND METHODS

2.1 Study area
Southern part of the state of Assam situated between 24°15'-25°55' N and 92°15' - 92°35' E. The soil samples were collected from the selected rice fields of Son beel (24°42'05.9''N 92°27'16.4''E) and its adjoining areas of Anandapur(24°50'34.5''N 92°27'16.5''E) and Deodhar (24°42'06.4''N 92°27'43.9''E) located in Karimganj district, Southern Assam (Fig 1). This region experiences heavy rainfall during the months of May to September with high humidity of about 80%. The subtropical, warm, climatic condition of the district with a heavy summer rainfall favour the luxuriant growth of cyanobacteria in the rice field of this district. The study was conducted in Karimganj district,

Isolation, maintenance and identification of strains
Cyanobacterial strains were isolated from soil samples collected from the selected rice fields during 2012-2014 by the dilution plate method (Lukesova A. 1993). Dilutions (10^{-2}, 10^{-1}) were prepared from the soil suspensions obtained and 1ml were spread on solidified 1% BG-11\textsubscript{o} (nitrogen free media) or BG-11 (with nitrogen source) media depending on suitability for various genera (Rippka et al. 1979). Plates were subsequently cultured and incubated at a temperature of 24°C ± 1 under a 16:8 hour (light: dark) photoperiod at a light intensity of 2000-3000 lux. Unialgal cyanobacterial strains were carefully picked up and transferred onto petri plates with fresh agar medium. Repeated subculturing was performed a number of times until pure axenic culture were obtained. The axenic culture was then viewed and microphotography was done in Leica DM1000 microscope with software. The strains were identified based on their morphological features and phenotypic characters following standard keys (Prescott 1952; Desikachary 1959).

RESULTS AND DISCUSSIONS

Morphological characteristics
All the morphological characteristics viz. cell shape and size, heteroecyst, akinetes shapes etc. presence or absence of sheath was studied. A total of thirty four cyanobacterial strains were obtained from the
study sites including seven heterocystous forms: Anabaena, Nostoc, Calothrix, Cylindrospermum, Microchaete, Hapalosiphon and Westiellopsis and three non-heterocystous forms: Oscillatoria, Phormidium and Lyngbya.

Anabaena anomala Fritsch. Plate 1, Figure a.
Order: Nostocales
Family: Nostocaceae
Thallus thin, gelatinous, blue green; trichome dense, irregularly aggregated, more or less contorted, moniliform, 2-5µm broad; filaments single and loosely coiled; apical cell subconical, apex obtuse; cells generally 2-4µm broad, spherical, as long as broad; heterocyst intercalary, commonly single, spherical, 3-4µm broad.

Anabaena constricta (Szafer) Geitler Plate 1, Figure b.
Order: Nostocales
Family: Nostocaceae
Thallus filamentous dull olive green in colour; filaments solitary or in macroscopic mats on the substrate; trichomes uniserial, often moniliform, isopolar, 4.5-5.5µm broad; cells constricted cylindrical, barrel-shaped or spherical, shorter up to longer than wide, pale or bright blue-green or olive-green, with granular content 5-8µm long; terminal cells sometimes slightly elongated, conical; heterocyst spherical, widely oval or cylindrical, sometimes elongated, usually slightly greater than vegetative cells 5-7µm broad.

Anabaena doliolum Bharadwaja. Plate 1, Figure c.
Order: Nostocales
Family: Nostocaceae
Thallus mucilaginous, pale blue green; trichome single, free swimming, slightly curved or slightly coiled, 3-4µm broad, slightly tapering at the ends, apical cell conical, almost pointed apex; cells barrel shaped as long as broad or a little longer or shorter than broad, 3-4µm broad, 5-7µm long; heterocyst barrel shaped, 4-5µm broad and 5-6 µm long, epispore thick, smooth, hyaline or yellow.

Anabaena flos aquae (Lyngb.) De Brebisson. Plate 1, Figure d.
Order: Nostocales
Family: Nostocaceae
Thallus filamentous, colony spread out, olive green in colour; trichomes planktonic, very flexuous and contorted, sometimes coiled in an irregular spiral fashion, entangled; cells spherical to subcylindric, 3-5µm in diameter, 5-7µm long, cell contents granular with conspicuous pseudovacuoles; heterocyst globose, 4-7µm broad, 6-10µm long; spores cylindrical, sausage shaped, in a series, crowded near the centre of a tangle of filaments, 4-7µm in diameter.

Anabaena gelatinicola Ghose. Plate 1, Figure e.
Order: Nostocales
Family: Nostocaceae
Thallus thick, blue green, broad, gelatinous. Trichome densely arranged and coiled, sometimes straight, cells subspherical 3-4 broad, acute apex, heterocyst oblong 4-5 broad, spores ellipsoid or oblong, in series, away from the heterocyst.

Anabaena orientalis Dixit. Plate 1, Figure f.
Order: Nostocales
Family: Nostocaceae
Thallus dark green colour, filaments densely entangled forming a globular pattern, expanding, highly mucilaginous, dense at some portions; trichome single, straight or slightly bent; 4-5µm broad, cells quadrate, rarely slightly barrel shaped, 3-6µm long, end cell conical with rounded apex; heterocysts single, intercalary, slightly ellipsoidal with rounded end walls, 5-6µm broad and 7-8µm long; spores ellipsoidal in shape, one in each side of the heterocyst, 7-8µm broad and 9-10µm long.

Anabaena iyengarii var tenuis Rao, C.B. Plate 1, Figure g.
Order: Nostocales
Family: Nostocaceae
Thallus light green in colour, filaments attached; trichomes without sheath, 5-6µm broad; cells slightly shorter than broad, 4-5µm length; heterocyst spherical, 5-6µm in diameter; spores developing at the old stage on both sides of the heterocyst, ellipsoidal, 9-12µm long, 7-8µm broad; end cell of the trichome conical shape.

Anabaena oryzae Fritsch. Plate 1, Figure h.
Order: Nostocales
Family: Nostocaceae
Thallus filamentous, soft, olive green in colour, gelatinous, attached, membranous; trichomes short, straight, densely aggregated cells generally parallel, 4-5µm broad, 7-8µm long; heterocyst terminal and intercalary, broader than the vegetative cells, 3-5µm broad, terminal ones conical and twice longer than broad, intercalary ones single or 2-3 in series, barrel shaped.

Aulosira aenigmatica Fremy. Plate 1, Figure i.
Order: Nostocales
Family: Nostocaceae
Thallus expanded, woolly type, dark blue green, filaments densely entangled, more or less intricate, suberect, 6-8µm broad; sheath colourless, close to trichome, membranous thin; trichome dark blue green 5-6µm broad, more or less constricted at the cross walls; cells almost cylindrical, subquadrate, both longer and shorter than broad, contents finely granular, 5-6µm broad; apical cells attenuated, obtuse conical, heterocyst oblong, cylindrical or spherical, single or two, 4-6µm broad,

Calothrix braunii (A. Br.) Bornet et Flahault.
Plate 1, Figure j.

Order: Nostocales
Family: Rivulariaceae
Thallus caespitose, reddish brown, filaments straight, parallel, swollen at the base; sheath thin, close to the trichome, colourless; trichomes parallel, gradually tapering to a point, compactly arranged to form a colonial expanse, 5-6µm broad, constricted at the cross walls; cells cylindrical, longer than broad; heterocyst basal, hemispherical, 6-7µm broad.

Calothrix braunii (A. Br.) Bornet et Flahault.
Plate 1, Figure k.

Order: Nostocales
Family: Rivulariaceae
Thallus filamentous, dark green coloured, floccose, filaments solitary, gradually tapering from base to apex, bent at the base and distinctly swollen up to 15µ broad; sheath thick, colourless, gelatinous, broad, diffusent at the apices; trichome 5-7µm broad, ending in a long thin hair, not constricted at the cross walls; cells at base shorter than broad, but at apices somewhat cylindrical, 4-7µm long, cell contents light blue green, homogenous; heterocyst basal, single, hemispherical, 5-9µm broad, smaller than the basal cell of the trichome.

Calothrix fusca (Kutz.) Bornet et Flahault.
Plate 1, Figure l.

Order: Nostocales
Family: Rivulariaceae
Filaments blue green or brownish, slightly bent, single, 7-10µm broad at the base with thin colourless sheath; trichome brownish green, constricted at the cross walls; cells quadratic, shorter or longer than broad, 4-7µm long and 3-7µm broad; heterocyst single, basal and spherical, 4-5µm broad.

Calothrix marchica var *crassa* Rao, C.B.
Plate 2, Figure b.

Order: Nostocales
Family: Rivulariaceae
Filaments in groups and closely entangled, sheath thin firm, hyaline, trichomes 6-4 broad, constricted at the septa, ends tapering without a hair, end cell conical with a rounded apex, sometimes pointed, cells quadratic as well as shorter or longer than broad, 2-4 long, at the apices up to 4 long, heterocyst single, basal, spherical or subspherical, 7-11 broad and up to 7 long.

Calothrix marchica var *intermedia* Rao, C.B.
Plate 2, Figure c.

Order: Nostocales
Family: Rivulariaceae
Thallus filamentous, brownish green, filaments in groups of two or three, slightly attenuated 7-10 µm broad; trichome 6.5-7µm broad, constricted at the cross walls; sheath thin, firm, hyaline; cells moniliform, somewhat quadratic, shorter or longer than broad, 5.5-6µm long; end cells slightly conical or obtuse with rounded ends; heterocyst basal, single, globose, 7-8 µm broad, cell wall smooth thick.

Cylindrospermum catenatum Ralfs ex Bornet et Flahault.
Plate 2, Figure d.

Order: Nostocales
Family: Nostocaceae
Thallus mucilaginous, united to form dark green patches in young cultures, becomes yellowish with age, then brownish after akinete formation; filaments united by their confluent mucilage; cells rectangular to short cylindric, finely granulated content, slightly constricted at the cross walls 4-5µm broad and 4-7 µm long; heterocyst terminal formed after trichome fragmentation, ovate to ellipsoid 4-5µm in diameter, 4-6 µm long; akinetes oblong formed in a series adjacent to the heterocyst with a smooth outer wall when mature, 7-10 µm broad, 13-18 µm long.

Cylindrospermum majus Kutz.
Plate 2 Figure e.

Order: Nostocales
Family: Nostocaceae
Thallus expanded, bluish green in colour, mucilaginous patch, filaments densely entangle; sheath indistinct; trichomes 3-5µm broad, constricted at the cross walls; cells cylindrical longer than broad, 3-5µm broad and 4-6µm long; heterocyst terminal, unipored, obtusely conical, 4-6µm broad, 4-5µm long; akinetes ellipsoidal with a roughened and punctuate wall, distinctly papillate and 8-10µm broad, 16-19µm long, cell wall smooth and thin.

Cylindrospermum muscicola var longispora Dixit. *Plate 2 Figure f.*
Order: Nostocales
Family: Nostocaceae
Thallus filamentous, expanding, olive green in colour, colony mucilaginous; trichome 2-3µm broad, 4-5µm long; heterocyst 5-6µm broad and 7-12µm long; akinetes ovoid 8-12µm broad and 18-21µm long with smooth walls.

Cylindrospermum stagnale (Kutz.) Bornet & Flahault. *Plate 2 Figure g.*
Order: Nostocales
Family: Nostocaceae
Thallus floccose, expanding, blue green in colour, filaments entangled or parallel in a mucilaginous expanse, attached or free floating; trichomes 3-4µm broad, constricted at the cross walls, cells nearly quadrature, or cylindrical often 3-4 times as long; heterocyst subspherical or oblong, 5-8µm broad, 7-11µm long; akinetes cylindrical with rounded ends, 9-10µm broad and 21-25µm long, with smooth outer layer.

Hapalosiphon intricatus West and West. *Plate 2 Figure h.*
Order: Stigonematales
Family: Stigonemataceae
Thallus filamentous, floccose, blue green in colour, filaments with uniseriate trichomes; sheath thin and colourless; branching present, with unilateral short branches which are flexuous, lateral branching long and mostly branching from one side of the main axis; cells ovate, barrel shaped or short cylindric, 5-7µm broad; branches crooked arising at various angles from the main axis; heterocyst intercalary, cylindrical or quadrate rounded.

Lyngbya martensiana (Menegh.) Gomont. *Plate 2 Figure i.*
Order: Nostocales
Family: Oscillatoriaceae
Thallus caespitose, mucilaginous, blue green, filaments much entangled and interwoven, bright blue green, long flexible, somewhat straight; trichome 6-10µm broad, cross walls not constricted and sometimes granulated; sheath colourless, firm, thick, lamellated, extending beyond the apices of trichomes; cells ½-¾ times as long as broad, 1.5-2.5µm long; end cells round, without calyptra, not capitates; cell wall thick smooth.

Microchaete robusta Setchell & Gardner. *Plate 2 Figure j.*
Order: Nostocales
Family: Microchaetaceae
Thallus filamentous, blackish brown in colour, forming a wooly type thin film; trichomes solitary, slightly attenuated towards the end; cells quadrate 8-9µm broad, 9-11µm long; cell contents granular at the cross walls; basal heterocyst globose, intercalary heterocyst quadrate; sheath distinct, thick, colourless and lamellated, 7-8µm broad and 6-7µm long.

Nostoc carneum Ag. ex Born. et Flah. *Plate 2 Figure k.*
Order: Nostocales
Family: Nostocaceae
Thallus at first globose, irregularly expanding, gelatinous and flesh coloured reddish brown in colour, filaments loosely contorted, flexuous and sheath indistinct; trichome 3-4µm broad; cells cylindrical and oblong, longer than broad, 3-5µm broad and 6-7µm long; heterocyst subspherical and oblong shaped 4-5µm broad; spores ellipsoidal, 4-6µm broad and 7-8µm long.

Nostoc commune Vaucher ex Born. et Flah. *Plate 2 Figure l.*
Order: Nostocales
Family: Nostocaceae
Thallus firm, gelatinous, light blue green, filaments flexuous, closely entangled forming globose membranous structure at young stage, later flattened, expanding, membranous or leathery, sometimes irregularly torn, often perforated; sheath mostly distinct only at the periphery, thick yellowish brown, inside the thallus more or less distinct, hyaline; trichome 5-6µm broad, cells spherical, 4-6µm long; heterocyst nearly spherical about 7µm broad; epispore smooth colourless.

Nostoc ellipsosporum (Desm.) Rabenh. ex Born. et Flah. *Plate 3 Figure a.*
Order: Nostocales
Family: Nostocaceae
Thallus caespitose, mucilaginous, blue green, filaments much entangled and interwoven, bright blue green, long flexible, somewhat straight; trichome 6-10µm broad, cross walls not constricted and sometimes granulated; sheath colourless, firm, thick, lamellated, extending beyond the apices of trichomes; cells ½-¾ times as long as broad, 1.5-2.5µm long; end cells round, without calyptra, not capitates; cell wall thick smooth.
Thallus colonial, gelatinous, reddish brown, irregularly expanded attached by the lower surface, to the substratum on solid medium; filaments flexuous loosely entangled; trichome about 4µm broad; cells cylindrical 6-9µm long; heterocyst subspherical or oblong 6-7µm broad and 6-11µm long; spores ellipsoidal to oblong cylindrical, in long chains, 6-8µm broad and 8-11µm long, epispore smooth.

Nostoc muscorum Ag. ex Born et Flah. *Plate 3 Figure b.*
Order: Nostocales
Family: Nostocaceae
Thallus gelatinous, colonial, dark blue green in colour, colony wide round, bottom dwellers; filaments highly coiled and densely entangled; trichome 3-4µm broad, pale blue green; cells short barrel shaped; heterocyst nearly spherical and 4-7µm broad.

Nostoc linckia (Roth.) Bornet ex Born. et Flah. *Plate 3 Figure .c*
Order: Nostocales
Family: Nostocaceae
Thallus varying in size sometimes punctiforme, at first globose later irregularly expanding, torn gelatinous, blue green or blackish green; filaments densely entangled, flexuous or highly coiled; sheath diffluent and colourless inside, distinct only in the peripheral portion; trichomes 4-5µm broad, pale blue green; cells barrel shaped; heterocyst subspherical; spores subspherical 4-6 µm broad, 7-8 µm long; epispore smooth.

Nostoc paludosum Kutzing ex Born et Flah. *Plate 3 Figure j.*
Order: Nostocales
Family: Nostocaceae
Thallus microscopic, punctiforme, gelatinous, colony oblong or subspherical; trichomes coiled in a wide and copious gelatinous investment 3-4µm broad; sheath broad, colourless or yellowish brown; cells barrel shaped, as long as broad 3-4µm broad, pale blue green; heterocyst ovate, broader than the vegetative cells 3-5 µm broad; spores oval, in short series with a smooth colourless membrane, 4-4.5 broad and 6-8 long.

Nostoc punctiforme (Kutz.) Hariot. *Plate 3 Figure f.*
Order: Nostocales
Family: Nostocaceae
Thallus sub-globose upto 2mm diameter, filaments scattered, flexuous, densely entangled; trichome; sheath delicate, hyaline; cells barrel shaped or ellipsoidal 3-5µm broad, 2-3.5µm long, blue green; heterocyst globose, 3-5µm broad, akinete subspherical or ovate 5-6µm broad and 5-8µm long.

Oscillatoria tenuis Ag.(after Gomont). *Plate 3 Figure g.*
Order: Nostocales
Family: Oscillatoriaceae
Thallus thin, blue green forming a slimy mass; trichome thin, fragile, solitary or aggragated, straight or slightly curved, not attenuated at the apices, slightly constricted at the cross walls 4-6 µm broad; cells short barrel shaped 2-4.5µm broad and 2-3µm long; heterocyst globose 3-6µm broad and 4-6µm long; akinete ovate or oblong 1-2µm broad and 2-3µm long.

Phormidium tenue (Menegh.) Gom. *Plate 3 Figure h.*
Order: Nostocales
Family: Oscillatoriaceae
Thallus thin, blue green forming a slimy mass; trichome thin, fragile, solitary or aggragated, straight or slightly curved, not attenuated at the apices, slightly constricted at the cross walls 4-6 µm broad; cells short barrel shaped 2-4.5µm broad and 2-3µm long; heterocyst globose 3-6µm broad and 4-6µm long; akinete ovate or oblong 1-2µm broad and 2-3µm long.
longer than broad 2-6µm long; septa not granulated; end cells acute conical; calyptra absent.

Westiellopsis prolifica Janet. Plate 3 Figure i.
Order: Stigonematales
Family: Stigonemataceae
Thallus floccose, planktonic green colour, filamentous, with branching of two kinds. Main filament torulose; cells barrel shaped 5-10µm broad, branch filaments thinner and elongate, not constricted at the cross walls; cells elongate cylindrical 4-6µm broad; heterocyst oblong cylindrical 5-8 µm broad and 8-10 µm long. The presence of both heterocystous and non heterocystous forms of cyanobacteria has been observed in the rice fields of Karimganj district. In the present study rich diversity of heterocystous cyanobacteria with 31 species represented with 8 genera 2 orders have been reported. Nayak and Prasanna (2007) recorded more heterocystous forms while studying cyanobacterial abundance and diversity in rice field soils of India. The heterocystous forms were also found to be more abundant in similar studies made by others (Bharadwaj and Baruah. 2013; Tiwari et al. 2015). Thirty four cyanobacterial species belonging to Nostocaceae, Rivulariaceae, Microchaetaceae, Stigonemataceae and Oscillatoriaceae family were recorded from the rice fields. Out of this, highest number of heterocystous strains were represented by Nostoc(9), followed by Anabaena(8), Calothrix(6), Cylindrosporum(4) while Hapalosiphon, Microchaete, Westiellopsis and Aulosira are each represented by single species. The non heterocystous genera Oscillatoria, Lyngbya and Phormidium are also represented by single strains. The two heterocystous genera Anabaena and Nostoc forms over 90% of the filamentous cyanobacteria isolated from the rice fields. This observation is in conformity with the findings elsewhere (Prasanna R. et al. 2009; Karabi and Sarma 2015). Similar findings are also observed by Dasgupta and Ahmed (2013) where the rice field cyanobacterial biodiversity from 3 different subdivisions viz –Tezpur, Biswanath chariali, Gahpur of Sonitpur district of Assam (India) were studied. The distributional pattern showed that the genera Nostoc, Anabaena, Aulosira, Calothrix Westiellopsis and Aphanocapsa were the dominant rice field blue green algae in the district. Singh et al. 2014 phenotypically characterized twenty nine strains of cyanobacteria from the paddy fields of Chattisgarh state, India where the phenotypic attributes were observed to be strain specific. Free-living photosynthetic strains of cyanobacteria capable of fixing nitrogen have been isolated and used in biofertilizer consortia in south-east Asian countries and the potential impact of these organisms on agriculture through their use as biofertilizers, soil conditioners, plant growth regulators and soil health ameliorators is well recognized (Whitton 1992). A rich diversity of heterocystous cyanobacteria from rice fields of Cuddalore district in Tamilnadu state where 30 species, represented with 7 genera under single order and three families have been reported (Selvi et al. 2012). Cyanobacteria are known to be an integral component of rice fields where they play an important role in building soil fertility. They were mainly ascertained by the variations in the morphological structures and distinctive characters during their young and old stages of growth. The abundance, diversity, distribution and presence of several heterocystous forms of cyanobacteria are an indicator of low nitrogen content in rice fields.
Plate 1
a) Anabaena anomala b) Anabaena constricta c) Anabaena doliolum d) Anabaena flos aquae e) Anabaena gelatinicola f) Anabaena orientalis g) Anabaena iyengarii var tenuis h) Anabaena oryzae i) Aulosira aenigmatica j) Calothrix braunii k) Calothrix braunii l) Calothrix fusca; Scale = 5µm

Plate 2
a) Calothrix marchica b) Calothrix marchica var. crassa c) Calothrix marchica var intermedia d) Cylindrospermum catenatum e) Cylindrospermum majus f) Cylindrospermum muscicola var longispora g) Cylindrospermum stagnale h) Hapalosiphon intricatus i) Lyngbya martensiana j) Microchaete robusta k) Nostoc carneum l) Nostoc commune; Scale = 5µm
CONCLUSION

As rice is cultivated widely in the studied region, emphasis can be given for the association of mineral and nitrogen supplements with the nitrogen fixing cyanobacteria for increasing the agricultural yield of the region. This paper highlights the importance of morphological characterization and identification of the cyanobacterial strains for their application in the rice fields for management of nitrogen fertilizer can be used for sustainable agricultural practices.

ACKNOWLEDGEMENT

The authors are thankful to the Department of Science and Technology, New Delhi, Government of India under the project fund (SERB/SR/SO/PS/96/2010) for providing financial assistance. The facilities required for carrying out this investigation provided by the Department of Biotechnology, Government of India during the research work is gratefully acknowledged.

REFERENCES

9. Hazarika D, Dynah I, Barukial J. An ecological assessment of algal growth with

